高雄醫學大學 109 學年度學士後醫學系招生考試試題

科目:物理及化學	考試時間: 100 分鐘
說明:一、選擇題用 2B 鉛筆在「答案卡」上作答,修正時應以橡皮擦擦排	式,不得使用修正液(帶),
未遵照正確作答方法而致電腦無法判讀者,考生自行負責。	
二、試題及答案卡必須繳回,不得攜出試場。	
Choose one best answer for the following questions	

【單選題】每題1分,共計30分,答錯1題倒扣0.25分,倒扣至本大題零分為止,未作答,不給分亦不扣分。 1~15題為物理,16~30題為化學。

1. Consider the block and spring system shown in the drawing. On the earth's surface the natural frequency is ω . The system is then transported into moon's surface (Gravitational acceleration: $g_{Moon} = g_{Earth}/6$). How will the natural frequency of the system change?

2. What is this body's moment of inertia *I* about axis through disk *A*?

3. The figure shows a plot of the time-dependent force $F_x(t)$ acting on a particle in motion along the x-axis. What is the total impulse delivered to the particle?

4. A block of mass m sliding down an incline at constant speed is initially at a height h above the ground, as shown in the figure. The coefficient of kinetic friction between the mass and the incline is μ . If the mass continues to slide down the incline at a constant speed, how much energy is dissipated by friction by the time the mass reaches the bottom of the incline?

第1頁,共9頁

- 5. A baseball is thrown vertically upward and feels no air resistance. As it is rising
 - (A) both its momentum and its mechanical energy are conserved.
 - (B) both its momentum and its kinetic energy are conserved.
 - (C) its kinetic energy is conserved, but its momentum is not conserved.
 - (D) its momentum is not conserved, but its mechanical energy is conserved.
 - (E) its gravitational potential energy is not conserved, buts its momentum is conserved.

6. Which step is one of the Carnot cycle?

- (A) Isobaric compression (B) Isochoric compression
 - (E) Isobaric expansion

(C) Isothermal compression

(D) Isochoric expansion (E) Isobaric expansion

7. One surface is remained at temperature of 300 K and it's heat current in radiation is *H*. When it was heated to 600 K, what is the heat current in radiation of this surface comparing to that at 300 K?
(A) 32H
(B) 16H
(C) 8H
(D) 4H
(E) 2H

- 8. A conducting sphere is charged up such that the potential on its surface is 100 V (relative to infinity). If the sphere's radius were twice as large, but the charge on the sphere were the same, what would be the potential on the surface relative to infinity?
 (A) 25 V
 (B) 50 V
 (C) 100 V
 (D) 200 V
 (E) 400 V
- 9. There is a solid insulating sphere with radius *R* and total charge *Q*. Which diagram is correct for electric field *E* at any point inside or outside the sphere?

- 10. An object is placed at a distance 5.0 cm to the left of a concave mirror with a curvature radius 5.0 cm. Determine the location and magnification of the image formed by this image system.
 - (A) The image is formed 2.5 cm to the right of the mirror and it has a magnification of -1/2.
 - (B) The image is formed 5.0 cm to the right of the mirror and it has a magnification of -1.
 - (C) The image is formed 2.5 cm to the left of the mirror and it has a magnification of 1.
 - (D) The image is formed 5.0 cm to the left of the mirror and it has a magnification of -1.
 - (E) The image is formed 1.25 cm to the left of the mirror and it has a magnification of -1/4.
- 11. Soap bubble is colorful. What is the phenomenon of the colorful reflection appeared in the thin films?(A) Diffraction(B) Dispersion(C) Interference(D) Refraction(E) Total refraction
- 12. One rope with weight 2.0 kg and length 10.0 m is tied on a shelf and stretched taut by a 98 kg box at the bottom. What is the speed v of a transverse wave on the rope? (Gravitational acceleration g = 10 m/s²)
 (A) 10.0 m/s
 (B) 10.7 m/s
 (C) 70.0 m/s
 (D) 70.7 m/s
 (E) 100.0 m/s
- 13. A 80 kg baseball player begins his slide into third base at speed of 5 m/s. The coefficient of friction between his clothes and ground is 0.8 to make him stopped when he reached the third base. How far does he slide?
 (A) 1.22 m
 (B) 1.32 m
 (C) 1.41 m
 (D) 1.50 m
 (E) 1.59 m
- 14. Given that the wavelengths of visible light range from 400 nm to 700 nm, what is the highest frequency of visible light? (c = 3.0×10^8 m/s) (A) 3.1×10^8 Hz (B) 5.0×10^8 Hz (C) 4.3×10^{14} Hz (D) 7.5×10^{14} Hz (E) 2.3×10^{20} Hz
- 15. There is a doughnut-shaped toroidal solenoid with 200 turns of wires carrying current 0.02A. The inner radius of that is 1 m and outer radius is 5 m. What is the magnetic field *B* of this doughnut-shaped toroidal solenoid at the point with distance 0.5 m from center of that? (μ_0 is permeability constant)

(A) 0 (B) $4 \mu_0 / \pi$ (C) 2μ

(C) $2 \mu_0 / \pi$

(D) $\mu_0/2\pi$

(E) $\mu_0/4\pi$

第2頁,共9頁

16.	For 1.0 M of the following solution, wh (A) NaF (B) Na ₂ S ₂	ich chemical g_{O_3}	gives the (C) NI	highest pH value H ₄ Cl	? (D)	Al(NO ₃) ₃	(E)	Ethanol
17.	Which of the following complex is diat $(A) [Ni(CN)_6]^{4-}$ (B) [Ti(CI	nagnetic? N) ₆] ^{3–}	(C) [C	$r(CN)_6]^{3-}$	(D)	$\left[Co(CN)_6\right]^{3-}$	(E)	All of these
18.	Which of the following molecule does (A) N_2 (B) B_2	't exhibit the b	ehavior (C) O ₂	of <i>s-p</i> mixing of r	nolecu (D)	ılar orbitals? NO	(E)	All of these
19.	Which of the following substrate is more	st likely to exh	ibit liqui	d crystalline beha	vior?			
	(A)	(B) 6		N N	$\overline{\}$	(C) H ₂ N		CO ₂ Et
	(D) 6	(E) C ₂₅]	H ₅₁ OH					
20.	What is the net number of tetrahedral h (A) 8 (B) 4	oles contained	in the cl (C) 12	ose packing of spl	heres u (D)	unit cell like face-cen 6	nter cu (E)	ubic? 3
21.	Which of the following active ingredien(A) NaCl(B) NaCl	nt is most com)	monly us (C) Na	sed in liquid bleac aClO ₂	thes (S (D)	anitizers)? NaClO ₃	(E)	NaClO ₄
22.	Natural copper contains two isotopic fo	rms. The mos	t commo	on isotope is ⁶³ Cu	(atomi	c mass 62.93 amu),	which	n is 69.09%
	(A) 61.90 amu (B) 63.10	amu	(C) 64		(D)	65.90 amu	(E)	67.10 amu
23.	 0.2 g of FeCl₃(s) is dissolved in 20 mL (A) pH > 7 (D) no effect on pH 	water. The pH (B) pH · (E) this	of this a < 7 cannot b	queous solution a e determined	ut 25 °C	C will be $(C) pH = 7$		
24.	Several possible combinations of ΔH and ΔH and ΔH	d ΔS for a rea	ction are	listed as below. V	Which	of the following cas	e is sp	ontaneous for this
	(A) ΔH is positive, ΔS is positive (D) ΔH is positive, ΔS is negative	(B) ΔH (E) Non	is negative is of thes	ve, ΔS is positive e		(C) ΔH is negative.	tive, 2	ΔS is negative
25.	First-row transition metals play signific	ant roles in bio	ological	system. Which of	the fol	llowing transition m	etal is	a component of
	(A) Cr (B) Zn		(C) Fe	;	(D)	Cu	(E)	Со
26.	What is the charge of NO molecule if the $(A) + 1$ $(B) - 1$	ne bond order	is 2? (C) 0		(D)	+2	(E)	-2
27.	What is the range of wave number (cm(A) 3610-3640(B) 2850-	(-1) for an organ (-3300)	nic molec (C) 21	cule containing a c 00–2300	carbon (D)	yl group in the infra 1690–1760	red sp (E)	ectrum? 1080–1300
28.	The complex cis -Pt(NH ₃) ₂ Cl ₂ showed	high anti-tume	or activity	y, but <i>trans</i> -Pt(NH	$I_3)_2Cl_2$	2 showed no effect o	n tum	or therapy. These
	(A) linkage isomerism(D) ionization isomerism	(B) opti (E) geor	cal isome metric iso	erism omerism		(C) coordinatio	on isoi	merism
29.	The decay of strontium-90 follows a fir	st-order proces	ss and the	e rate constant is (0.0240	16 year^{-1} . How much	n of 2	mg sample of
	(A) 0.250 mg (B) 0.062	mg	(C) 0.0	031 mg	(D)	0.125 mg	(E)	0.500 mg
30.	Which compound yields the largest van (A) NaCl(B) MgCl	't Hoff factor	(i) when (C) M	dissolved in wate gSO4	er? (D)	FeCl ₃	(E)	Glucose

【單選題】每題2分,共計120分,答錯1題倒扣0.5分,倒扣至本大題零分為止,未作答,不給分亦不扣分。 31~60題為物理,61~90題為化學。

- 31. In a baseball game, the pitcher throw a ball (150 g) at a speed of 30.0 m/s. The batter hit it straight back with a speed of 40.0 m/s. What is the average force exerted by the bat if the bat-ball contact time is 0.005 sec?
 - (A) 300 N (B) 14000 N (C) 1200 N (D) 2100 N (E) 900 N
- 32. A bullet of mass m traveling at speed v strikes a block of mass M, initially at rest, and is embedded in it as shown below. How far will the block with the bullet embedded in it slide on a rough horizontal surface of coefficient of kinetic friction μ_k before it comes to rest?

- 33. An unusual spring has a restoring force of magnitude $F = (2.00 \text{ N/m})x + (1.00 \text{ N/m}^2)x^2$, where x is the stretch of the spring from its equilibrium length. A 3.00 kg object is attached to this spring and released from rest after stretching the spring 1.50 m. If the object slides over a frictionless horizontal surface, how fast is it moving when the spring returns to its equilibrium length? (A) 5.84 m/s
 (B) 4.33 m/s
 (C) 2.06 m/s
 (D) 5.48 m/s
 (E) 1.50 m/s
- 34. Two blocks are in contact on a frictionless table. A horizontal force is applied to the larger block. F = 100 N, $m_1/m_2 = 2$. The force acting on the small block from the larger one is,

35. A uniform solid sphere of mass *M* and radius *R* rotates with an angular speed ω about an axis through its center. A uniform solid cylinder of mass *M*, radius *R*, and length 2*R* rotates through an axis running through the central axis of the cylinder. What must be the angular speed of the cylinder so it will have the same rotational kinetic energy as the sphere? (A) $2\omega/5$ (B) $2\omega/\sqrt{5}$ (C) $\omega/\sqrt{5}$ (D) $\sqrt{2/5}\omega$ (E) $4\omega/5$

- 36. Two Earth satellites, A and B, of same mass *m*, are to be launched into circular orbits about Earth's center. Satellite A is to orbit at an altitude of Earth' radius, $h_A = R_E$. Satellite B is to orbit at an altitude of $2h_A$. The ratio of the total energy of satellite B to that of satellite A is,
 - (A) 1/2 (B) 2/3 (C) 2 (D) 3/2 (E) 1/4
- 37. A charged dust particle of mass m = 32 mg and charge value q = 100 nC is releasing from plate 1 with zero speed, where $V_1 = 130$ V, and $V_2 = -30$ V. The dust particle velocity when reaching plate 2 is,

38. As a gas is held within a closed chamber, it passes through the cycle shown in the figure. Along path ab, the change in the internal energy is 3.0 J and the magnitude of the work done is 5.0 J. Along path ca, the energy transferred to the gas as heat is 2.5 J. How much the change in the internal energy along path bc?

+5.5 J (B) +10.5 J (C) –0.5 J (D) -10.5 J (E) -5.5 J (A)

39. A 30.0 g bullet shoot into an ice at speed of 2.4×10^2 m/s and stay inside. Assume the kinetic energy is transfer to thermal energy, and absorbed by the ice, what is the change in entropy of the ice?

- (A) 86.4 J/K (B) 27.0 J/K (C) 31.6 J/K (D) 2.7 J/K (E) 3.16 J/K
- 40. In process *ab*, 20 J of heat is added to the system. In process *bd*, 80 J of heat is added to the system. Find the internal energy change ΔU in process *acd*?

41. The density of wood, water and unknown liquid are 0.8 g/cm³, 1.0 g/cm³, and 1.2 g/cm³, respectively. The volume ratio of the wood that can be seen in water and unknown liquid is (E) 1/4

(A) 5/6 (B) 3/4 (C) 2/3(D) 1/2

Water flows through a horizontal pipe and then out into the atmosphere, where $d_2/d_1 = 2$. The speed of the water at the output of 42. the pipe is $v_1 = 10$ m/s. The desity of water is 1g/cm³. What is the gauge pressure at the left section? (1 atm = 1.01×10^5 Pa)

- 43. A patient need an intravenous drip contains a glucose solution. If the average pressure in the vein is 1.30 kPa, what is the minimum height to hang the bag in order to infuse glucose into the vein? Assume the specific gravity of the solution is 1.02. (B) 1.30 m (D) 2.6 m (A) 0.13 m (C) 0.26 m (E) 0.52 m
- 44. A balloon is to be filled with helium and used to suspend a mass of 300 kg in air. If the mass of the balloon is neglected, which of the following gives the approximate volume of helium required? (The density of air is 1.29 kg/m^3 and the density of helium is 0.18 kg/m^3)
 - (C) 135 m^3 (B) 95 m^3 (D) 270 m^3 (E) 540 m^3 (A) 50 m^3
- 45. There are two parallel-plate capacitors with same plate area A. As the figure illustrated, C_1 is filled with two materials of dielectric constants κ and 2κ , while C_2 is filled with only one material. The capacitance ratio C_1 / C_2 is _____

第5頁,共9頁

47. There is a straight current-carrying conductor with current I = 10 A and length L = 2 m. What is the magnetic field **B** of this conductor at the distance 2 m from that? (μ_0 is permeability constant) (A) $5 \mu_0$ (B) $5 \mu_0/\pi$ (C) $5 \mu_0/2\pi$ (D) $\mu_0/2\pi$ (E) μ_0/π

- 48. If the displacement current in a parallel-plate capacitor $(0.5 \,\mu\text{F})$ is 4.0 A, at what rate is the potential difference varying across the plates?
 - (A) $2.0 \times 10^{6} \text{ V/s}$ (B) $8.0 \times 10^{6} \text{ V/s}$ (C) $4.0 \times 10^{6} \text{ V/s}$ (D) $1.25 \times 10^{7} \text{ V/s}$ (E) The potential difference is not varying
- 49. Three charge particles are situated as illustrated. Particle 1 and 2 are fixed, while particle 3 is free to move. If there is no net force on the particle 3, what is the charge ratio q_2/q_1 ?

50. The sliding bar has a length of 1.0 m, and moves at 3.0 m/s in a magnetic field of magnitude 0.5 T. This could induced motional emf. If the resistance in the circuit is 1.0Ω , what is the power delivered to the resistor if the current goes counterclockwise around the loop?

- 51. What is the critical angle when a ray passes from diamond into air? The index of refraction for air and diamond is 1.00 and 2.42, respectively.
 (A) 0°
 (B) 24°
 (C) 30°
 (D) 36°
 (E) 66°
- 52. The figure shows the energy levels for an electron in a finite potential energy well. If the electron makes a transition from the n = 3 state to the ground state, what is the wavelength of the emitted photon?

53. Light of wavelength 500 nm is incident upon a single slit with width 2×10^{-4} m. The diffraction pattern is observed on a screen positioned 4 m from the slit. Determine the distance of the second dark fringe from the central peak.

(A) (0.01 m	(B)	0.02 m	(C)	0.03 m	(D)	0.04 m	(E)	0.05 m
-------	--------	-----	--------	-----	--------	-----	--------	-----	--------

54.	Unpolarized light can be p diamond into air? The inde	olariz	ed, either partially o refraction for air and	r total diamo	ly, by refloond is 1.00	ection. W 0 and 2.42	hat is th 2, respec	e polarizing angle w ctively.	when a	ray passes from
	(A) 0°	(B)	22°	(C)	31°		(D)	42°	(E)	66°
55.	Monochromatic light is no deviated at a 30° angle. W	ormall hat is	y incident on a diffra the wavelength of th	action ne inci	grating th dent light'	at is 1 cm ?	wide a	nd has 12,500 slits.	The fir	st order line is
	(A) 300 nm	(B)	400 nm	(C)	500 nm		(D)	600 nm	(E)	1000 nm
56.	The work function for a conception of the sector of the se	ertain is (c =	sample is 2.3 eV. Th $= 3.00 \times 10^8$ m/s):	e stopj	ping poter	ntial for el	lectrons	ejected from the sar	nple b	y $6.0 \times 10^{14} \text{ Hz}$
	(A) 0 V	(B)	0.18 V	(C)	0.36 V		(D)	2.0 V	(E)	3.6 V
57.	A police car chases fugitive heard by a passenger in a constraint of source	'es on car tra d in tł	the highway at 144 weling at 108 km/hr he air is 345 m/s.	km/hr, in the	its siren e opposite e	emitting s direction	ound at as the p	a frequency of 500 a frequency o	Hz. W roach	hat frequency is each other?
	(A) 420 Hz	(B)	495 Hz	(C)	545 Hz		(D)	595 Hz	(E)	625 Hz
58.	Two cars are approaching out a horn sound traveling horn's sound frequency th	to eac in air at car	ch other. Car A move with speed of 343 n A sends out is	es at sp n/s. Th 	beed $v_A =$ he horn's s	108.0 km ound free	/hr, and Juency a	the car B at $v_B = 72$. as detected by the ca	0 km/l r B is 1	hr. The car A sends 1000 Hz. The
	(A) 1212 Hz	(B)	1154 Hz	(C)	948 Hz		(D)	862 Hz	(E)	821 Hz
59.	The wave function of the s The speed of a wave is	string	wave is given by y	(x,t) =	$= 0.2m \times h$	$\left[\left(20m^{-1} ight) ight.$	x + (10s)	$\left[t^{-1}\right]t$, where <i>h</i> deno	tes a g	eneral function.
	(A) 2 m/s	(B)	1.5 m/s	(C)	1 m/s		(D)	0.5 m/s	(E)	0.25 m/s
60.	A standing sound wave pa distance between two node	ttern o es is	on a long string is de	escribe	d by $y(x)$	(t,t) = 0.00	$8 \times \sin($	$10\pi x$)cos $(20\pi t)$ (a	ıll in S	I unit). The
	(A) 0.1 m	(B)	0.2 m	(C)	0.3 m		(D)	0.4 m	(E)	0.5 m
61.	Which is an incorrect state (A) C_v is identical for m (B) Molecular motion of (C) C_v of polyatomic id (D) $C_p > C_v$ in all ideal (E) $C_p = \frac{5}{2}R$ for mona	ement nonato of mor leal ga gases tomic	for heat capacity of omic ideal gases natomic ideal gas is z as is larger than C _v o ideal gas	ideal g zero f mon	gases? atomic ide	eal gas				
62.	$C_{diamond}(s) \rightarrow C_{graphite}(s)$	ΔG^{o}	= -2.9 kJ							
63.	Which of the following is (A) The process is spon (C) Smaller ΔS° for dia (E) The process becom Determine the number of p	an inc taneou mond e reve nodal	correct statement? us rsible at high temper surfaces for a 3 <i>s</i> orb	rature : ital.	and pressu	(B) It of (D) Sm ure	occurs v naller ΔI	ery slowly at 25 °C a H° for diamond	and 1a	tm
	(A) 3	(B)	2	(C)	1		(D)	0	(E)	None of these
64.	Which molecule has only	one re	esonance structure th	at obe	ys the Oct	tet rule?		_		~~~ ² -
65	(A) NO^+	(B)	NO_2^{-1}	(C)	NO_3^{-}	nu al a an n	(D)	O_3	(E)	$CO_3^{2^-}$
05.	(gyromagnetic ratio of ${}^{1}\text{H}$	and ¹³	$\sqrt{(\text{WHZ})}$ for C fluct $\sqrt{3}$ C is ~ 4)	lei ope	rateu ili a	nuclear n	liagnetic	resonance spectron		1 400 MHZ?
	(A) 100	(B)	200	(C)	400		(D)	800	(E)	1600
66.	The color difference betwe	een [C	CoCl_4 ²⁻ and $[\operatorname{Co}(\operatorname{H}_2 \circ$	0) ₆] ²⁺	can be su	pported b	y which	n concept?		
	(A) Redox process(D) van't Hoff factor		(B) Sp(E) Ha	ectroc	hemical so ft Acid-Ba	eries 1se		(C) Dispropor	tionati	on reaction
67.	How many net numbers of (A) 1	i sphe	res are occupied in a	face-o	centered c	ubic (f.c.	c.) unit c	cell?		0
68	(A) I For a reaction involving of	(B) hange	∠ s of reactant concent	(C) ration	4 s ([A]) w	hat is the	(D) reaction	0 1 order (m) when the	(E) correl	o $ation of ln [\Delta]$
00.	versus time (t) is a straight line?									
	(A) $m=0$	(B)	<i>m</i> =1/2	(C)	<i>m</i> =1		(D)	<i>m</i> =2	(E)	None of these

69.	Consider the reaction $\text{Fe}^{3+}(aq) + \text{SCN}^{-}(aq) \longrightarrow \text{FeSCN}^{2+}(aq)$. Which one of the following statements is correct? (A) The equilibrium position shifts to the right after water is added to double the volume (B) The equilibrium position shifts to the right after AgNO ₃ (aq) is added (C) The equilibrium position shifts to the left after NaOH(aq) is added (D) The equilibrium position shifts to the left after Fe(NO) ₃ (aq) is added (E) None of the above is correct
70.	Which "P" in the following compounds has the lowest oxidation state?(A) Phosphoric acid(B) Phosphorous acid(C) Hypophosphorous acid(D) Sodium phosphide(E) Black phosphorus(C) Hypophosphorous acid
71.	How many π electrons are delocalized in 1,4-diphenyl-1,3-butadiene? (A) 4 (B) 8 (C) 16 (D) 24 (E) 32
72.	Based on MO theory, which molecule is not paramagnetic?
	(A) O_2^- (B) O_2^+ (C) O_2 (D) N_2 (E) N_2^+
73.	Consider mixing equal volume of $0.1 \text{ M} \text{ Na}_2\text{CO}_3$ solution and $0.1 \text{ M} \text{ H}_2\text{SO}_4$ solution. Which statement is correct?(A) $[\text{H}^+]$ is less than 0.05 M (B) $[\text{H}^+]$ is between 0.1 M and 0.05 M (C) $[\text{H}^+]$ is 0.1 M (D) $[\text{H}^+]$ is 0.2 M (E) $p\text{H} > 7$ (D) $[\text{H}^+]$ is 0.2 M
74.	Which is the major specie for a carbonate-containing solution at pH 8.5? $(K_{a1} = 4.3 \times 10^{-7}, K_{a2} = 4.8 \times 10^{-11}$ for carbonic acid) (A) CO ₂ (B) H ₂ CO ₃ (C) HCO ₃ ⁻ (D) CO ₃ ²⁻ (E) C ₂ O ₄ ²⁻
75.	What is the main contribution for the negative entropy value $(\Delta S^{\circ}_{soln} < 0)$ when formation of LiF(aq) in water?(A)Random dispersal of water(B)Breaking ordered bonding of solids(C)Interaction of Li ⁺ and F ⁻ with water molecules(D)Dispersion of Li ⁺ and F ⁻ into solution(E)Fast equilibriumFast equilibrium
76.	The energy required to remove the electron from a hydrogen atom in its ground state is 2.178×10^{-18} J. What is the energy required to excite the electron in the He ⁺ ion from the n = 1 level to the n = 2 level? (A) 1.634×10^{-18} J (B) 2.178×10^{-18} J (C) 3.268×10^{-18} J (D) 8.712×10^{-18} J (E) None of these
77.	To increase the value of <i>K</i> for the endothermic reaction as mentioned below, $N_2O_4(g) \longrightarrow 2NO_2(g)$
	(A) decrease the temperature(B) decrease the container volume(C) increase the total pressure(D) increase the temperature(E) None of these(C) increase the total pressure
78.	Two moles of an ideal gas undergo isothermal expansion from a volume of 1.0 L to a volume of 10.0 L against a constant external pressure of 1.0 atm. Calculate the changes of internal energy (ΔE). (1 L·atm = 101.3 J) (A) 9.12 × 10 ² J (B) 1.82 × 10 ³ J (C) -9.12 × 10 ² J (D) -1.82 × 10 ³ J (E) 0 J
79.	 Which theory, phenomenon or equation can explain redox potential difference on ion concentrations? (A) Disproportionation (B) Electrogenerated chemiluminescence (C) Galvanic displacement (E) Nernst equation
80.	Using the data below, calculate the normal boiling point of liquid Br ₂ at 1 atm. For the process, Br ₂ (l) \rightarrow Br ₂ (g): $\Delta H^{\circ} = 31.0 \text{ kJ mol}^{-1}$ and $\Delta S^{\circ} = 93.0 \text{ JK}^{-1} \text{mol}^{-1}$ (A) 300 K (B) 0.33 K (C) 0.30 K (D) 333 K (E) 433 K
81.	Using the data shown as follows to calculate ΔG° for the reaction (1 $F = 96,485$ coulombs): $2Fe^{3+}(aq) + Cu(s) \rightarrow 2Fe^{2+}(aq) + Cu^{2+}(aq)$ The reduction potentials for Fe ³⁺ and Cu ²⁺ are as follows: $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ $\varepsilon^{\circ} = 0.77 \text{ V}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ $\varepsilon^{\circ} = 0.34 \text{ V}$
82.	(A) -8.3×10^4 J (B) -1.2×10^5 J (C) -4.2×10^4 J (D) -6.0×10^4 J (E) -2.4×10^5 J For corrosion of iron, which of the following statements is (are) true? I. Anode reaction: Fe \rightarrow Fe ²⁺ + 2e ⁻ II. Cathode reaction: O ₂ + 2H ₂ O + 4e ⁻ \rightarrow 4OH ⁻ III. Moisture serving as a salt bridge
	 (A) I (B) III (C) I and II (D) I, II, and III (E) None of the statement is true

Above structure is the precursor of the Remdesivir (potential COVID-19 drug), which of the below statements are true? It is an aromatic compound It has 13 σ bond III. It shows dipole moment I. II. It has 11 σ bond V. It contains sp hybridization IV Please choose one of the answer below, (A) I and IV **(B)** II and IV (C) I, II, and III (E) None of these (D) I, II, III, and V 84. What is the boiling-point change for a solution containing 18.0 g of glucose in 150.0 g of water at 1 atm? ($K_b = 0.51$ °C kg/mol for water) (B) 0.06 °C (C) 0.34 °C (A) 2.2 °C (D) 4.3 °C (E) 1.8 °C 85. If the human eye has an osmotic pressure of 8.0 atm at 25°C, the concentration of solution particles in water will be mmol/L in order to provide an isotonic eyedrop solution, a solution with equal osmotic pressure. (A) 620 (B) 4,110 (C) 0.62 (D) 327 (E) 79 86. The solubility of CaCl₂ in cold water is 74.5 g per 100.0 g water. Assuming i = 3.0 for CaCl₂, the freezing point for a saturated solution of CaCl₂ will be _____°C. ($K_f = 1.86$ °C kg/mol for water) (B) -0.32 (A) 0 (C) –13 (D) -32 (E) -37.4 87. Determine the value of K_c for the reaction $HX(aq) \longrightarrow H^{+}(aq) + X^{-}(aq) \qquad K_{c} = 7.0 \times 10^{-4}$ $H_2C_2O_4(aq) \implies 2H^+(aq) + C_2O_4^{2-}(aq) \quad K_c = 4.0 \times 10^{-6}$ $2HX(aq) + C_2O_4^{2-}(aq) \longrightarrow 2X^{-}(aq) + H_2C_2O_4(aq) \quad K_c = ?$ (A) 0.001 (B) 0.01 (D) 1.0 (E) 10 (C) 0.1 88. 2-deoxy-2-[¹⁸F]fluoroglucose ([¹⁸F]FDG) decays by _____ and [¹⁸F] will yield stable _ (A) alpha emission, ¹⁸O
(D) photon emission, ¹⁹F (B) beta emission, ${}^{19}F_{10}$ (C) positron emission, ^{18}O (E) neutron capture, ^{19}O 89. For an unknown molecules A₂, if the dissociation energy is 1204 kJ/mol, what is the maximum wavelength of electromagnetic radiation required to rupture this bond? (Planck constant: 6×10^{-34} J.s, light of speed: 3×10^8 m/s) (A) 90 nm (B) 120 nm (C) 150 nm (D) 180 nm (E) 210 nm 90. Calculate the ratio of the root-mean-square velocities (μ_{rms}) of H₂ to SO₂.

83.

H₂N

(A) 1.0 (B) 0.18 (C) 32 (D) 5.6 (E) 180